

Journal of Alloys and Compounds 408-412 (2006) 657-660

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Potassium ion conductivity of KNO₂ mixed oxides

Kazushi Ando, Shinji Tamura, Nobuhito Imanaka*

Department of Applied Chemistry, Faculty of Engineering and Handai Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Received 30 July 2004; received in revised form 1 December 2004; accepted 15 December 2004 Available online 8 June 2005

Abstract

Two types of polycrystalline solids, KNO₂ mixed Gd₂O₃ and KNO₂ mixed Nb₂O₅, were prepared. In the case for KNO₂ mixed Gd₂O₃, a remarkable enhancement in K⁺ ion conductivity was successfully realized by interstitially dissolved KNO₃ formed during the preparation process in the C-type cubic Gd₂O₃ crystal lattice. In contrast, the conductivity of KNO₂ mixed Nb₂O₅ was more than three orders of magnitude below that of the Gd₂O₃–KNO₃ solid solution due to the KNO₃ decomposition during the preparation procedure. The K⁺ ion conductivity of the polycrystalline Gd₂O₃–KNO₃ solid solution is more than three orders of magnitude higher than that of the K⁺ ion conducting K₂SO₄ polycrystal and the value exceeds that of K⁺- β ^{''}-alumina single crystal in *ab* plane, realizing the highest ion conductivity among the K⁺ ion conducting solid electrolyte series. The superior ion conducting properties are realized by forming the interstitially KNO₃ dissolved Gd₂O₃ solid solution, without decomposing the mixed salt with K⁺.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Solid electrolyte; Potassium ion; C-type rare earth oxide; Gadolinium oxide; Niobium oxide

1. Introduction

K⁺ ion is one of conducting ion species in solids [1,2]. However, the K^+ ion (ionic radius (four-coordinate): 0.137 nm) conductivity is appreciably below the practical application region compared with those of Li⁺ (ionic radius (four-coordinate): 0.059 nm) and Na⁺ (ionic radius (four-coordinate): 0.099 nm) ion conductors, such as Li⁺ ion super ionic conductor of LISICON [3] and Na⁺ ion super ionic conductor of NASICON [4], according to its relatively large ionic size. One exception is the single crystal of K^+ - β'' -alumina [5] and its K^+ ion conductivity (in the *ab* plane) is as high as 10^{-1} S cm⁻¹ at 600 °C and the value is comparable to those of well-known Li⁺ or Na⁺ ion conducting solids. However, the K⁺ ion conductivity of K^+ - β'' -alumina single crystal along *c*-axis is several orders of magnitude lower than that in *ab* plane, indicating that the K^+ ion conductivity of the polycrystalline K^+ - β'' -alumina is

considerably below that of the K⁺- β'' -alumina single crystal. One of the other K⁺ ion conductors is polycrystalline potassium sulfate (K₂SO₄). However, the K⁺ ion conductivity of K₂SO₄ polycrystal is as small as 3.38×10^{-5} S cm⁻¹ at 600 °C [2] and still three orders of magnitude lower than that of the practical application region (>10⁻² S cm⁻¹) of the representative Li⁺ and Na⁺ ion conducting solids. In order to obtain practical K⁺ ion conductors, the realization of polycrystalline K⁺ ion conducting solid showing the ion conductivity which enters into the application region, is highly requested. In our previous communication [6], C-type Gd₂O₃ was selected as the mother polycrystalline solid which possesses the highest symmetric cubic phase and holds reasonable space for bulky ion conduction like K⁺ ions.

In this study, two types of oxides, cubic Gd_2O_3 (C-type rare earth oxide) and monoclinic Nb_2O_5 , were selected as the mother phase candidates and the mixing of KNO_2 was carried out to clarify the formation of the oxide– KNO_3 solid solution and their K^+ ion conducting characteristics were compared in detail.

^{*} Corresponding author. Tel.: +81 6 6879 7352; fax: +81 6 6879 7354. *E-mail address:* imanaka@chem.eng.osaka-u.ac.jp (N. Imanaka).

^{0925-8388/\$ -} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2004.12.067

2. Experimental

 Gd_2O_3 and KNO_2 powders were mixed by ball milling method (FRITSCH GmbH, Pulverisette 7). The mixture was pelletized and heated at 450 °C for 12 h in air. The pellets were pulverized and the resulting powder was pelletized again, and heated at 600 °C for 12 h in air, and then sintered at 600 °C for 12 h in air. The preparation of the KNO_2 mixed Nb_2O_5 solids was also carried out in a similar manner.

The sample characterization was conducted by X-ray powder diffraction using Cu K α radiation (Rigaku, Multiflex). The XRD data were collected by a step-scanning method in the 2θ range of 10–70°. The composition was identified by X-ray fluorescence analysis (Rigaku, ZSX100e). Fourier transform-IR spectrometer (JASCO International Co. Ltd., FT/IR-430) was used to obtain the infrared spectra of the samples. The electrical ac conductivity was measured using the sample pellet with the two Au electrodes by the complex impedance method (Hewlett-Packard, impedance analyzer 4192A) at the frequency region 5 Hz–13 MHz in the temperature range between 200 and 500 °C.

3. Results and discussion

Figs. 1(a) and 2 present the X-ray powder diffraction patterns of the KNO₂ mixed Gd₂O₃ and the KNO₂ mixed Nb₂O₅ series, respectively. Up to x = 0.405 in (1 - x)Gd₂O₃-xKNO₃, only C-type cubic Gd₂O₃ phase was observed, while additional peak corresponds to KNO₃ was observed for x > 0.405. Furthermore, the lattice parameter of C-type cubic Gd₂O₃ monotonously increases with the KNO₃ content in (1 - x)Gd₂O₃-xKNO₃ as shown in Fig. 1(b), suggesting the formation of the Gd₂O₃-KNO₃ solid solution. From Fig. 1, it becomes clear that the solid solution limit in the series is estimated to be ca. x = 0.405. In contrast, for the KNO₂ mixed Nb₂O₅ series, all samples prepared show peaks corresponding only to mother Nb₂O₅ phase without any peak shift in the XRD patterns.

From IR measurements of $(1 - x)Gd_2O_3 - xKNO_3$ with x = 0.405 and 0.469 (Fig. 3), the bands at 1384 cm^{-1} (ν_3 asymmetric stretching mode of NO_3^{-1} and 827 cm^{-1} (outof-plane ν_2 deformation mode of NO₃⁻) were observed for both samples, suggesting that NO₃⁻ anion exists in both solids. Furthermore, we have confirmed that the IR spectra of mother Gd₂O₃ did not change by KNO₂ doping. Therefore, it is considered that KNO2 may be oxidized by ambient oxygen during the heating process. Since it is evident from Fig. 1 that the solids for $x \le 0.405$ are the single solid solution, while the solid is the mixture phase of the Gd₂O₃-KNO₃ solid solution and KNO₃ phases for $x \ge 0.469$, the IR spectrum for the solid solution of x = 0.405 is the NO₃⁻ anion existing in the interstitial sites of the solid solution. From the IR measurements for the KNO₂ mixed Nb₂O₅ series, there appears no peak corresponding to NO3⁻ anion, indicating that all the samples prepared in the KNO2 mixed Nb2O5 series do not

Fig. 1. (a) The X-ray powder diffraction patterns of KNO_2 mixed Gd_2O_3 and (b) the relationship between lattice parameter and the KNO_3 content in the Gd_2O_3 - KNO_3 solids.

Fig. 2. The X-ray powder diffraction patterns of KNO2 mixed Nb2O5.

Fig. 3. FT-IR spectra of (a) Gd_2O_3 , (b) $0.595Gd_2O_3-0.405KNO_3$ and (c) $0.531Gd_2O_3-0.469KNO_3$.

contain NO_3^- at all. Although a peak shift in XRD and the IR bands corresponding to NO_3^- anion were not recognized at all, the K content in the KNO₂ mixed Nb₂O₅ system was the same as that of the mixing ratio from the X-ray fluorescence analysis. The results indicate the fact that KNO₃ produced from the oxidation of KNO₂ decomposes during preparation procedure.

The KNO₃ content dependencies of the electrical conductivity at 500 °C for the Gd₂O₃–KNO₃ series are presented in Fig. 4. The electrical conductivity increases with the KNO₃ content in the Gd₂O₃–KNO₃ solids and shows the maximum conductivity at around x = 0.405. As the sample with x = 0.469was the mixed phase (see Fig. 1), the highest conductivity of 10^{-1} S cm⁻¹ was obtained for the sample with x = 0.405among the samples having the single solid solution phase. On the other hand, the conductivities for the KNO₂ mixed Nb₂O₅ series were independent of the mixing ratio of KNO₂.

Fig. 5 shows the temperature dependencies of the conductivity for the $0.595Gd_2O_3$ -0.405KNO₃ solid solution and the 0.4KNO₂ mixed 0.6Nb₂O₅ solid, together with the data of K⁺- β'' -Al₂O₃ single crystal (in *ab* plane) and polycrystalline K₂SO₄. The conductivity of the 0.595Gd₂O₃-0.405KNO₃ solid solution is three orders of magnitude higher than that of KNO₂ mixed Nb₂O₅, indicating the formation of the solid solution by introducing K⁺ cation and NO₃⁻ anion simul-

Fig. 4. The KNO₃ content dependence of the electrical conductivity for the Gd_2O_3 -KNO₃ series at 500 °C.

Fig. 5. The temperature dependencies of the conductivity for the $0.595Gd_2O_3-0.405KNO_3$ solid solution (\bullet) and $0.4KNO_2$ mixed $0.6Nb_2O_5$ (\bigcirc) with the corresponding data of K⁺- β'' -Al₂O₃ single crystal [5] (in *ab* plane) (solid line) and polycrystalline K₂SO₄ [2] (dotted line).

taneously in the Gd₂O₃ crystal lattice. The conductivity of 0.595Gd₂O₃-0.405KNO₃ is two times higher than that of the K⁺- β'' -Al₂O₃ single crystal (in *ab* plane) having the highest K⁺ ion conductivity among the K⁺ ion conducting solids reported so far. The solid solution formation is also effective to avoid decomposition of KNO₃, which is clearly observed in the case for the Nb₂O₅-KNO₃ series.

4. Conclusions

Two types of solid mixtures, KNO₂ mixed Gd₂O₃ and KNO₂ mixed Nb₂O₅, were studied as the starting materials for the synthesis of new type of K⁺ ion conducting solids. The formation of the solid solution with holding both K⁺ cation and NO₃⁻ anion in the interstitial Gd₂O₃ crystal lattice was explicitly observed in the case for Gd₂O₃-KNO₃, and the K⁺ ion conductivity was as high as 10^{-1} S cm⁻¹ at 500 °C, while decomposition of the salt with K^+ occurred in the case for the KNO2 mixed Nb2O5 series, resulting in the great conductivity decrease compared with the cases for the Gd₂O₃-KNO₃ solids and the K⁺- β'' -Al₂O₃ single crystal (in ab plane). The results described above clearly support the idea that the Gd_2O_3 -KNO₃ solid is the superior K⁺ ion conducting solid solution electrolyte which contains not only K^+ cation but also NO₃⁻ anion in the polycrystalline C-type cubic Gd₂O₃ crystal lattice.

Acknowledgment

This work was supported by the Industrial Technology Research Grant Program in 2002 (Project ID: 02A27004c) from the New Energy and Industrial Technology Development Organization (NEDO) based on funds provided by the Ministry of Economy, Trade and Industry, Japan (METI).

References

- P.J. Gellings, H.J.M. Bouwmeester, The CRC Handbook of Solid State Electrochemistry, CRC Press, Boca Raton, 1997.
- [2] M. Natarajan, E.A. Secco, Can. J. Chem. 53 (1975) 1542.
- [3] H.Y.P. Hong, Mater. Res. Bull. 13 (1978) 117.
- [4] J.B. Goodenough, H.Y.P. Hong, J.A. Kafalas, Mater. Res. Bull. 11 (1976) 203.
- [5] M.S. Whittingham, R.A. Huggins, Proceedings of the Fifth Material Research Symposium, Solid State Chemistry, vol. 364, National Bureau of Standard Publication, 1972, p. 139.
- [6] Y.W. Kim, A. Oda, N. Imanaka, Electrochem. Commun. 5 (2003) 94.